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Abstract

A theory has been developed which has been shown to predict experimental bubble growth data for both spherical
growth in an unbounded liquid and hemispherical growth at a heated plane surface in microgravity. The theory is able
to accommodate both spatial and temporal variations in the temperature and velocity fields in the liquid surrounding
the bubble as it grows. Utilising the present theory, the complicated thermal and hydrodynamic interactions between
the vapour, liquid and solid have been manifested for a single isolated bubble growing on a heated plane surface from

inception. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The increased rate of heat transfer during nucleate
boiling is determined by the vapour bubbles which grow
and depart from the heated surface. Energy is intro-
duced into the liquid by conduction from the heated
solid surface and is stored within a thin thermal
boundary layer adjacent to the surface. During surface
boiling, this energy is ultimately used to vaporise the
liquid and cause bubbles to form and grow. Further-
more, fluid motions induced by bubble growth disrupt
the thermal boundary layer, thus enhancing the local
rate of heat transfer. Consequently, insight into the
mechanisms which are responsible for transporting en-
ergy away from a heated surface can be gained by un-
derstanding the nature of bubble growth.

Early theoretical works focussed on the ideal case of
spherically symmetric bubble expansion in a uniformly
superheated infinite pool of liquid. With these simplifi-
cations, the rate of bubble growth is determined by the
surface tension, the liquid inertia and the difference in
pressure between the vapour within the bubble and the
ambient liquid. Analytic expressions which fully de-
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scribe the growth of a bubble were unattainable because
of the complicated thermal and hydrodynamic interac-
tion of the vapour and liquid at the bubble wall. This
was further complicated by coupling between the liquid
momentum and energy equations through the non-lin-
ear convection term. To reduce the complexity of the
problem, Rayleigh [1], Plesset and Zwick [2] and For-
ster and Zuber [3] considered two limiting regions of
bubble growth separately. Lord Rayleigh [1] solved the
one-dimensional problem by considering the case in
which growth or collapse is governed by momentum
interaction between the bubble and ambient fluid. This
later became known as the inertia controlled stage of
bubble growth. Almost four decades later, Plesset and
Zwick [2] and Forster and Zuber [3] independently de-
termined that the later stage of bubble growth is con-
trolled by the rate at which energy is transferred
through the liquid to the vapour-liquid interface. This
was termed the diffusion or heat transfer controlled
growth stage. By approximating a solution to the en-
ergy equation, it was shown that their first-order solu-
tions were in good agreement with the experimental
results provided by Dergarabedian [4] for water with
low superheats at atmospheric pressure. Including the
effects of radial convection in the liquid, Scriven [5]
obtained an expression for the bubble growth rate
which is very similar to that of Plesset and Zwick [2]
and Forster and Zuber [3].
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Nomenclature
A area
D; radial grid line

d distance from vapour-liquid interface

g earth gravity

g gravity in which experiments were performed
hig latent heat of evaporation

J Jacobian

k thermal conductivity

M grid parameter

N grid parameter

P pressure

(0] energy required for bubble growth

q" heat flux

r radial direction

b radial coordinate location of bubble interface
R bubble radius

R. initial bubble radius

Sk grid clustering coefficient

t time

t* time to nucleation

T temperature

u radial velocity (spherical coordinates)

U radial velocity (cylindrical coordinates)

U° contravarient velocity

V axial velocity

Ve contravarient velocity

z axial direction

zp axial coordinate location of bubble interface

Greek symbols

o thermal diffusivity
Y angle measured from z-axis
€ transformed computational coordinate
n transformed computational coordinate
v kinematic viscosity
o density
T transformed computational time
Subscripts
1 liquid
R at bubble interface
v vapour
wall
1D one-dimensional
00 far field

By assuming that the bubble growth rate was
bounded by the analytic solutions of Rayleigh [1] for
small values of time and that of Plesset and Zwick [2] as
time approached infinity, a general relationship was
derived by Mikic et al. [6] for spherical bubble growth in
a uniformly superheated liquid which involved both the
inertia and heat transfer controlled growth stages. This
theory was found to be in good agreement with the ex-
perimental data of Lien [7] for water over a wide range
of system pressures.

Numerical computations of vapour bubble growth in
an infinite, uniformly superheated liquid have been
performed by Theofanous et al. [§], Judd [9], Board and
Duffy [10], Dalle Donne and Ferranti [11], and Lee and
Merte [12]. In the first three works, approximate solu-
tions to the energy equation were used, whereas in the
latter two works, a more rigorous numerical solution of
the entire energy equation, including the non-linear
convective term, was obtained.

The mechanisms associated with vapour bubble
growth at a plane heated surface are not understood
nearly as well as unbounded growth in an infinite pool.
This is due to the fact that it is exceedingly difficult to
control the temperature and flow field in the vicinity of
growing bubbles during experimental investigations due
to natural convection and liquid motions induced by
other bubbles. Due to the rapidly varying temperature
and flow fields, large scatter is observed in the available
bubble growth data at earth gravity, which makes

comparison with theory very difficult because of the
uncertainty involved in matching the initial and
boundary conditions.

However, recent data have been reported by Lee [13],
Lee and Merte [14], and Merte et al. [15], in which the
shortcomings associated with earth gravity surface
boiling experiments are partially overcome by heating a
stagnant pool of liquid to the onset of boiling in
microgravity. The absence of any significant natural
convection, combined with the fact that, during the early
stages of growth, the thermal and flow fields are not
influenced by previous or neighbouring bubbles, provide
well-defined initial and boundary conditions. Even still,
the temperature distribution in the solid and liquid were
not measured directly, so that approximations are re-
quired for determining the initial liquid temperature
field and the boundary condition for the solid heater. A
further simplification results from the fact that, for some
of the measurements, the bubble remained nearly
hemispherical for a significant portion of the growth
period. The fixed bubble shape adds considerable sim-
plification with respect to theoretical modelling and an
accompanying solution procedure. In this manner, Lee
and Merte [14] and Merte et al. [15] were able to com-
pare the experimental hemispherical bubble growth
data, obtained in R113 on a flat solid surface subject to
transient heating, with the theoretical predictions of two
one-dimensional spherical models. In the first, an initial
uniform liquid temperature, equal to the highest surface
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temperature which occurs at nucleation, was assumed.
This represented the upper bound on the bubble growth
rate, since the highest temperature was assumed to exist
everywhere throughout the liquid. The second model
assumed a spherically symmetric, non-uniform tem-
perature field around the bubble. The temperature dis-
tribution was assumed to be identical to that occurring
normal to the heated surface at nucleation. This was
regarded as the ‘minimum temperature distribution’ and
represented the lower bound on the bubble growth rate.
All of the measured growth curves presented in [13-15]
fell between bounds defined by the uniform and non-
uniform models.

This paper describes the development of a two-
dimensional theoretical model which is capable of
predicting both spherically symmetric vapour bubble
growth in an infinite pool of liquid as depicted in
Fig. 1(a) and hemispherical vapour bubble growth at a
heated plane surface as depicted in Fig. 1(b). The theory
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is the logical progression from the work provided in [13—
15] in that it can incorporate either a one-dimensional
radially symmetric or a two-dimensional spatially dis-
tributed liquid temperature field. It must be carefully
noted that the applicability of the present model is
limited to the special case in which the energy utilised by
the bubble as it grows is supplied by the superheated
liquid layer which surrounds the bubble cap. Any con-
tribution of an evaporating microlayer at the base of the
bubble to the net mass transfer rate into the bubble, or
its influence on the thermal field in the solid during
heterogeneous bubble growth, is wholly disregarded.
The purpose of this investigation is twofold. First, to
advance a simplified physical model and solution pro-
cedure for heterogeneous bubble growth. Because many
of the fundamental mechanisms are the same, study of
this simplified type of growth provides a starting point
for more complex theoretical development. Second, to
elucidate the factors which contribute to bubble growth.
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Fig. 1. (a) Spherical vapour bubble growth in an unbounded liquid with a uniform temperature field at t =0 and a spherically
symmetric temperature profile for ¢ > 0; (b) hemispherical vapour bubble growth at a heated flat surface with a non-uniform tem-
perature field at # = 0 and a spherically non-symmetric temperature profile for ¢ > 0.
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By considering a significant portion of the growth period
of a single isolated bubble beginning from inception, the
proportional contributions of the various mechanisms
which govern growth can be discerned.

2. Formulation of the problem

Fig. 2 shows a sketch of the hemispherical vapour
bubble growing at a heated plane surface. Although a
viscous boundary layer is known to exist in the liquid
above the heated surface, in most practical applications
this layer is very thin compared with the size of the
bubble so that its overall influence on the bubble as is
grows can be neglected. This, coupled with the imper-
meable wall boundary condition, allows for liquid flow
symmetry to be assumed about the r-axis. As a result,
hemispherical bubble growth can be modelled as a half
segment of the spherical case. In doing so, the equation
of motion for the radius, R, of the hemispherical vapour
bubble is approximated by the equation for a growing
sphere given by
d’R 3 (dR)2 20

PV(TV)_POC Rdt2+ 1 E +? (1)

Eq. (1) is the extended Rayleigh equation which rep-
resents a force-momentum balance between the bubble
and surrounding liquid. A detailed derivation of this
relationship can be found in Riznic et al. [16]. The initial
bubble radius is determined by assuming that the va-
pour is initially saturated, with T, = T, and that it
exists in unstable equilibrium with the quiescent sur-
roundings. For a stationary vapour bubble with internal
pressure Py, (T,) at equilibrium with a liquid at pressure
P, the Young-Laplace equation gives an initial radius
of,

20
Rc :Psat(Tv) _Poc. (2)
§
z ..
Liquid, P, , T,
T,
,Y (rb’ Zb)
Vapour "
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Fig. 2. Hemispherical bubble growing on a plane heated sur-
face.

As a result of the dependence of the vapour pressure on
temperature, at least one more equation is required to
fully describe this type of bubble growth problem. This
expression is obtained by considering an energy balance
at the vapour-liquid interface. The energy, Q, required
to expand the bubble is supplied by molecular conduc-
tion across the thin thermal boundary layer that exists in
the liquid around the bubble. Therefore, the rate of
change in the energy contained in the vapour bubble is
such that

do _ or
e Jy kl(an) d4, 3)

where As is the surface area of the bubble and (07 /0n)y
is the temperature gradient normal to the interface.
Various researchers [1,3,5,10,11] propose different for-
mulations for the term dQ/ds. However, for commonly
used fluids well below the critical pressure, the interfacial
energy balance can be reduced to

dR . Rdp, 1 or
h B S m(ZL) aa. 4
ey T T R /AS ‘(an>R @)

In the above expression, the vapour motion and prop-
erty variations within the bubble are neglected. Riznic
et al. [16] provide a comprehensive derivation of Eq. (4).
Typically, during nucleate pool boiling, energy is
continually supplied to the liquid by heat transfer nor-
mal to the plane heated surface throughout the entire
growth interval of the bubble. Furthermore, an initial
liquid temperature distribution which is spherically
symmetric around the bubble is not common for most
practical boiling applications. These two conditions in-
troduce two-dimensional effects which need to be ac-
counted for in order to adequately describe this type of
bubble growth. As a result, the temperature gradient
at the bubble wall is obtained by numerically solving
the two-dimensional energy equation in axisymmetric
cylindrical coordinates for the moving liquid,

2
ariatrEsa(earg)
with initial and boundary conditions given by
T(r,z,0) = Ty(r,z),

T(ry,20,) = T,

T(00,00,t) = Tip(z,1),

o7 (6)
- (0,z,1) =0,

Z—Z(r,o,t) :i”]/v

The initial condition requires the entire temperature field
in the liquid to be specified. A zero flux boundary
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condition is assumed at the symmetry boundary (z-axis)
and a constant heat flux boundary condition is estab-
lished at the plane heated surface (r-axis). Some dis-
cussion is warranted concerning the assumption of a
constant and uniform heat flux at the solid-liquid
interface. Admittedly, this assumption significantly
reduces the complexity of the problem by eluding the
solution of the energy equation in the solid. However,
Gau and El-Genk [17] showed that a constant heat flux
can be a reasonable approximation for the case in which
energy is supplied to the liquid by resistance heating of a
thin metallic coating deposited on a glass substrate, so
long as the layer is thin enough to restrict the lateral flow
of heat through the metal coating. For the experiments
presented in [13-15] a 400 A transparent gold film was
deposited on a polished glass substrate. The thinness of
the metallic layer precludes any significant lateral heat
flow so that a constant heat flux boundary condition is
an adequate representation of the surface for compari-
son with this data. A third boundary condition is ob-
tained by assuming that the vapour phase is lumped and
that the temperature of the liquid at the interface is
identical to the temperature of the vapour. Finally, the
far-field boundary condition is approximated from the
analytic solution for one-dimensional axial conduction
in a semi-infinite medium. The axial and radial velocities
are determined as functions of the instantaneous bubble
radius and interface velocity by assuming that the flow
field can be determined by the solution for potential flow
around an expanding sphere in an unbounded liquid.
The velocity components are

2
dr R .
a ( (r +22)1/2) sin(

2
dr R
V = E (m) COS('}’).

A brief description of the finite difference solution of the
energy equation is set out in Appendix A.

Finally, it is postulated that the vapour is saturated
and remains so throughout the bubble growth interval.
In this way, the vapour pressure and density can be
specified as functions of the saturated vapour tempera-
ture,

P(T) =a\Ty + ayT* + a3 T2 + ay T + asT?,

\

(8)
o, () =aTl, + csz + C3Tv3 + C4Tv4 + C5Tv5.

As in [12-14], the property variations with temperature
are obtained from a fifth-order polynomial represen-
tation of the available property data. With these sim-
plifications, only the rate of change of one state
variable, in this case temperature, need be considered
given that

P, (dPV) dr,

de \dr, ) dt’

)
dpv _ dpv dTV
dr — \dr, ) dt°

3. Solution procedure

Egs. (8) and (9) together with Egs. (1) and (4) form a
set of simultaneous equations for the four unknowns
T,, P,, p, and R, which were solved numerically using a
fourth-order Runge-Kutta method. In order to initiate
bubble growth, the equilibrium radius R, was perturbed
by allowing it to increase by a very small amount over
an infinitesimally small time interval. This is equivalent
to a disturbance in temperature or pressure [10]. A
comprehensive discussion on the initial disturbance can
be found in [12] and [13]. For this study, the initial time
step never exceeded 1077 s, and the radius increase did
not exceed 0.05% of the initial radius. Care was taken to
ensure that the magnitude of the initial disturbance did
not significantly affect the computed growth curve.

4. Comparison with experiment
4.1. Spherical bubble growth

A wealth of experimental data exists for spherical
bubble growth in liquids with an initial uniform super-
heat. This, coupled with the fact that many of the more
complex features of heterogeneous growth are absent
during homogeneous growth, provides a good test for
the present theory and computational procedure. To
investigate spherically symmetric growth, the initial

25
| o Lien [7], Water, P,=0.382 atm, T..-T,,;=9.0 °C

+ Lien [7], Water, P_=0.124 atm, T.-T,=10.67 °C

20 [ A Lien [7], Water, P.=0.0124 atm, T.-Ty,=15.74 °C

© Bohrer [18], R113, P,=0.0361 atm, T.-T=48.21 °C
15 | © Bohrer [18], R113, P.=0.0835 atm, T.-T,=34.12 °C
—— Present Theory

ooooooon

Time, t (ms)

Fig. 3. Comparison of computed results with experimental data
for spherical bubble growth in water and refrigerant R113.
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temperature distribution is set to be spatially uniform,
and symmetry about the r-axis is approximated by set-
ting ¢, = 0 to establish a zero temperature gradient.

Fig. 3 shows the comparison of the predictions of the
present theory with experimental data of Lien [7] and
Bohrer [18]. In the figure, the present theory shows
acceptable agreement with the experimental data for
homogeneous bubble growth for a range of system
pressures and initial liquid superheats for two different
fluids. Similar agreement was observed with the bubble
growth data provided by Dergarabedian [4] and Board
and Duffy [10] for superheated water.

4.2. Hemispherical bubble growth

Heterogeneous bubble growth depends strongly on
the amount of energy stored in the thermal boundary
layer which forms adjacent to the heater surface. The
sensible heat stored in the liquid is converted to latent
heat by evaporation into the bubble as it grows. As a
result, any predictive model of bubble growth requires
that the temperature profile in the liquid be known prior
to bubble growth. By heating a quiescent, uniform

t (a) — Predicted 2-D growth

5¢ e Lee and Merte [15] data

——  1-D growth curves.

Upper: Uniform superheat
Lower: Non-uniform superheat

Radius, R (mm)
w

YT LXEAL

T EAEEEE DA

—

0 A PR R TR R S S W | F N RN TR S S § PR
0 50 100 150 200 250 300
Time, t (ms)

temperature liquid in microgravity, Lee [13] was able to
show that the solution of the one-dimensional transient
heat conduction equation for a constant heat flux
boundary condition in a semi-infinite solid did a very
good job at predicting the measured mean surface tem-
perature. Consequently, the initial temperature distri-
bution in the liquid could be predicted by the expression

24/t
T(zt) = Ty +M

€X Zz
ki p Aoyt

where ¢* is the time to the onset of boiling. This ex-
pression, together with the assumption of a quiescent
liquid, specifies the initial conditions required by the
present theory.

Bubble growth predictions for three different test
cases are shown in Fig. 4. For each experiment the
computational predictions of the two one-dimensional
spherically symmetric models, which represent the upper
and lower bounds of growth, are given together with the
two-dimensional heterogeneous model. As expected, the
fully two-dimensional model predicts growth curves

E (b) —— Predicted 2-D growth

r o  Lee and Merte [15] data

—— 1-D growth curves.
Upper: Uniform superheat
Lower: Non-uniform superheat

eveoe?®

0000°‘°°...

0 50 100 150 200 250 300
Time, t (ms)

F (c)

Radius, R (nm)
[T R S

—

— Predicted 2-D growth
o Lee and Merte [15] data
—— 1-D growth curves.
Upper; Uniform superheat
Lower; Non-uniform superheat

oe?

o

0 50 100

150 200 250 300

Time, t (ms)

Fig. 4. Comparison of computed results with experiments for hemispherical bubble growth of R113 on a heated plane surface in
microgravity, g./g=10"* (a) ¢" =7 W/em?, P, =149.9 kPa, T, =59.8°C, T, =48.3°C, * =091s, T; =85.8°C; (b) ¢" =
6.5 W/em?, P,, = 117.3 kPa, T,y = 52°C, T,, = 48.8°C, t* = 0.74 s, T = 86.3°C; (¢) ¢" = 6.95 W/cm?, P, = 106.8 kPa, Ty, = 49.1°C,

T, =48.35°C, 1 = 0.75 s, T = 84.1°C.
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which are positioned somewhere inbetween the upper
and lower bounds as depicted in the figure. More im-
portantly, satisfactory agreement is observed between
the measured growth curves over a large portion of the
respective growth intervals. This lends support to the
physical modelling of the problem as well as the nu-
merical techniques utilised in the computations. It can
be noted that the agreement between the computed and
experimental curves lends support to the assumption
that, for these specific test cases, microlayer evaporation
did not play a significant role in the bubble growth
process.

5. Bubble dynamics

In the following sections, the growth characteristics
of a single isolated hemispherical bubble growing at a
plane heated surface with negligible effect of an evap-
orating microlayer will be discussed. The boiling con-
ditions are identical to those of Fig. 4(b). Fig. 5 shows
the time variation of the predicted bubble radius and
vapour temperature. In the figure, four regions of
growth have been demarcated and will be discussed in
turn. In Fig. 6 the energy equation for the vapour
bubble, Eq. (4), has been decomposed to expose the time
varying contributions of its constituent terms. From the
figure, it is apparent that the term involving the rate of
change of vapour density (1/3)h,R(dp,/dt), is negligible
compared with the interface velocity term, Agp, (dR/df).
Thus, for discussion purposes, the growth rate can be
considered proportional to the area averaged heat flux
into the bubble throughout its growth,

dR 1 [ oT
—_— X — l — ) d4=4" . 11
dr AS /45 l(an)R 9ave ( )
100000 ¢ 90
10000 ﬁ\ 180 «
1000 | {702
F =
g 100 ¢ \&‘ 160 %
{ g (]
= 10} —— {508
g : {40 2
5 0.1 g
< F N
g o001 | < 1%0¢
0.001 | / 120
00001 Fon 1108
: E ST IT Ic HT |
0.00001 L et i it VERRTTTTIN 0

1E-06 0.0001 0.01 1 100

Time (ms)

Fig. 5. Bubble radius (R) and temperature (7y) histories for
hemispherical bubble growing atop a heated surface.
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Fig. 6. Decomposition of the energy equation, Eq. (4), showing
four growth domains: surface tension controlled (ST), tran-
sition (T), inertial controlled (IC), and heat transfer controlled
(HT).

In Fig. 7, the constituent components of the equation
governing the motion of the interface, Eq. (1), are rep-
resented. In the figure, the pressure difference, P, — P,
is balanced by the stress in the interface through the
surface tension term, 2¢/R, and the hydrodynamic
pressure, Py, defined as

d’R 3 (0R\’
Phd:le?'i'zpl(E) . (12)

The hydrodynamic pressure can be regarded as the ex-
cess pressure at the bubble interface that is a direct
consequence of the bulk motion of the liquid. The total
pressure in the liquid at the interface is related to the
hydrostatic and hydrodynamic pressures through
PR =P + Pyq.

5.1. Surface tension controlled growth (ST)

During the surface tension controlled domain, energy
is continuously supplied to the bubble by conduction
through the liquid. This is evident from the positive
value of ¢, . in Fig. 6. However, the average heat flux
into the bubble, and thus the growth rate dR/d:z, are
small enough that the contribution of the hydrodynamic
pressure in balancing the equation of motion is insig-
nificant so that it essentially reduces to a static force
balance, P, — P,, ~ 20 /R, as shown in Fig. 7(a). Because
P, is constant, an increase in the bubble radius must
occur in conjunction with a decrease in P,, which of
course coincides with a proportional decrease in the
vapour temperature, 7,. This is an important effect be-
cause the decreasing vapour temperature represents a
decreasing interface boundary temperature for the liquid.
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Fig. 7. (a) Decomposition of the equation of motion, Eq. (1) showing the four growth domains: surface tension controlled (ST),
transition (T), inertial controlled (IC), and heat transfer controlled (HT); (b) constituent terms of the hydrodynamic pressure term

given in Eq. (12).

As the liquid is essentially still, the decreasing interfacial
liquid temperature acts to increase the interfacial tem-
perature gradient, (07/0n)z. The magnitude of the
temperature gradients at the interface can be charac-
terised by considering the tip and base of the bubble as
the bounding values. These are shown in Fig. 8. It can
thus be said that bubble growth in this domain is ac-
celerated due to a positive feedback effect in which the
increase in the radius, R, is related to a decreasing in-
terfacial liquid temperature. This corresponds with an
increase in ¢, ., through the increase in the magnitude of
the local temperature gradient, which feeds back by a
proportional increase in the bubble growth rate, dRr/dr.
In the earliest stage of the surface tension domain, this
feedback effect is not significant. However, in the latter

stage, it becomes appreciable as indicated by a notice-
able increase in R away from R, (Fig. 5), a significant
decrease in both 7, and P, (Figs. 5 and 7(a), respectively)
and a sharp rise in ¢ (Fig. 6)

ave

5.2. Transition domain (T)

As the bubble interface is accelerating radially out-
ward there comes a point at which the effects of the bulk
liquid motion outside the bubble are no longer insig-
nificant. The transition domain is thus distinguished
from the surface tension domain by the relative contri-
butions of the surface tension term and the hydrody-
namic pressure term in balancing the equation of
motion. Fig. 7(a) shows that the excess pressure at the
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Fig. 8. Interfacial liquid temperature gradient histories at the top of the hemispherical bubble (along z-axis), and the base of the

hemispherical bubble (along r-axis).

interface due to flow effects, P4, rises sharply at the
beginning of this region and quickly becomes of the
same order of magnitude as the surface tension term,
20/R.

At the beginning of the transition domain the effects
of liquid motions are still small, so that both ¢/, and
dR/dt continue to increase rapidly as a result of the
positive feedback effect discussed earlier. However, as
evident from Fig. 6, the rate of change of ¢/, and dR/d¢
are shown to decrease in the latter stage and reach a
maximum value at approximately 3 x 10~* ms. Because
the decreasing vapour temperature tends to have a
positive influence on the local temperature gradient and
thus g, this signifies that there are mechanisms at work
which tend to oppose the increase of ¢ .. The most
obvious is the fact that, as the growing bubble faces the
additional resistance associated with forcing the bulk
liquid out radially, the rate at which P, and T, decrease
becomes less rapid. This tends to adversely affect the rate
at which (07/0n); and ¢ . increase. The significant
decrease in the slopes are demarcated by the ‘inflection’
on the 7, and P, — P, curves shown in Figs. 5 and 7(a),
respectively. Secondly, conduction and advection occur
in the liquid adjacent to the interface. Each of these heat
transfer mechanisms act in such a way as to diminish the
temperature gradients in the immediate vicinity of the
vapour-liquid interface and thus have a detrimental in-
fluence on the rate at which ¢}, and dR/d¢ increase.
Advection describes the mechanism by which thermal
energy is transported into the bulk of the liquid away
from the bubble interface due to outward radial flow.
Conduction, on the other hand, is responsible for the

transport of energy into the vapour bubble, and to a
lesser extent into the bulk liquid. This is illustrated in
Fig. 9, where the temperature profiles along the z- and
r-axes are shown.

5.3. Inertial controlled growth (IC)

Inertia controlled growth refers to the interval of
bubble growth in which the rate of bubble expansion is
considered to be limited by the rate at which the growing
interface can push back the surrounding liquid [19]. In
this domain, the average heat flux into the bubble is very
high, as illustrated in Fig. 6, so that heat transfer to the
interface is not the limiting mechanism of growth.

Fig. 7(a) shows that the pressure difference, P, — P,
is now balanced by the hydrodynamic pressure at the
interface. The hydrodynamic pressure comprises two
‘inertial’ terms as given in Eq. (12). These are the ac-
celeration term, p,R(d’R/d#), and the velocity term,
(3/2)p,(dR/d¢)*. These are plotted in Fig. 7(b). The two
terms are of differing sign and thus tend to have an
opposite influence on the total liquid pressure, and thus
the force of the liquid on the bubble interface. The
negative acceleration term accounts for the fact that the
fluid body surrounding the bubble is decelerating,
causing outward force on the bubble surface. The ve-
locity term is positive because the expanding bubble wall
is effectively pushing the fluid outwardly. The reaction
force of the liquid on the bubble wall is thus inwardly
directed and must be of opposite sign.

This inertial controlled growth domain is character-
ised by a decreasing average heat flux and decelerating
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Fig. 9. Computed liquid temperature distribution at (a) the top
of the hemispherical bubble (along z-axis), and (b) the base of
the hemispherical bubble (along r-axis) at various times.

interface as shown in Fig. 6. This signifies that the
positive influence that the decreasing vapour tempera-
ture tends to have on the local temperature gradient is
not sufficient to compensate for the rate at which ad-
vection and conduction serve to decrease the tempera-
ture gradient at the interface. Figs. 5 and 8 show that the
decreasing vapour temperature occurs in conjunction
with decreasing interfacial temperature gradients at the
tip and base of the bubble. Fig. 9(a) shows this point
more clearly. Here, the interfacial liquid temperature is
decreasing. However, due to a net loss of thermal energy
by conduction out of the liquid and into the vapour
bubble, coupled with conduction and advection of
thermal energy away from the bubble and into the bulk
liquid, the maximum temperature within the boundary
layer decreases and moves further out from the bubble
interface. This ‘shrinking’ and ‘stretching’ of the thermal
boundary layer results in an overall decrease in magni-
tude of the interfacial temperature gradient, even with a
decreasing interfacial liquid temperature. Fig. 9(b)
shows a similar effect at the base of the bubble except
that the maximum temperature, which is equal to the

temperature of the liquid adjacent to the plane heated
surface, remains approximately constant during this
domain.

5.4. Heat transfer controlled growth (HT)

Heat transfer controlled growth refers to the interval
of bubble growth in which the rate of bubble expansion
is considered to be limited by the rate at which liquid is
evaporated into the bubble, which is dictated by the rate
of heat transfer by conduction through the liquid [19]. In
this late stage of bubble growth, the interface velocity
has slowed enough so that the hydrodynamic pressure,
Po4, becomes insignificant compared with the surface
tension term, 2¢/R, in balancing the pressure difference,
P, — P,.. This is shown in Fig. 7(a). As a result, the
equation of motion is essentially reduced to a balance of
static forces acting at the vapour-liquid interface,
P, — P, ~ 20 /R, in much the same way as it did in the
surface tension controlled region. However, in contrast
with the surface tension controlled region, increases in R
do not produce an appreciable decrease in the vapour
temperature of the bubble. As shown in Figs. 5 and 9,
the vapour temperature remains relatively constant and
approximately equal to its minimum value correspond-
ing with the saturation temperature of the system
(Tymin = Tat(Ps) = 52.0°C). Because the liquid temper-
ature at the interface is now constant, the positive
feedback effect, responsible for the rapid acceleration of
the vapour-liquid interface in the surface tension con-
trolled region, does not occur in this domain of growth.
Conversely, the ‘shrinking’ and ‘stretching’ of the ther-
mal layer in the liquid due to conduction and advection
are responsible for the continuous deceleration of the
interface due to the diminishing interfacial temperature
gradients. The decrease in the growth rate is com-
pounded by the fact that for # > 10 ms the top portion of
the bubble penetrates into a region of liquid which is
subcooled. This point is illustrated in Figs. 8 and 9(a) by
the negative value of the interface temperature gradient
for the tip of the bubble. Hence from this time onward,
the net energy transfer into the bubble is the difference
between that which leaves by condensation and that
which enters by evaporation.

It is interesting to note that the maximum tempera-
ture in the liquid along the heated surface exceeds that of
the far field wall temperature. This is illustrated for
t > 1.0 ms in Fig. 9(b). At any point along the heated
surface there are three heat transfer mechanisms which
act together to transport the imposed heat flux: radial
conduction tangent to the heater surface, axial conduc-
tion normal to the heater surface, and convection due to
the flow of liquid over the surface. The lower tempera-
ture in the immediate vicinity of the bubble indicates
that the imposed heat flux is being transported away
from the surface very efficiently. This region is charac-
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terised by a relatively high evaporative heat flux into the
bubble together with significant convective heat transfer
because it is the region of highest liquid velocity. Mov-
ing further away from the interface, the influence of
evaporation becomes less and the contribution of con-
vective heat transfer decreases due to the rapidly
diminishing liquid velocity (U(r,0,¢) o« 1/7*). The sur-
face temperature increases as the less efficient mode of
axial conduction normal to the surface becomes an im-
portant mode of heat transfer. One might expect the
surface temperature to increase asymptotically to the
surface temperature in the undisturbed region at R..
However, it is evident from interferometric investiga-
tions on growing bubbles that the thermal boundary
layer thickness adjacent to the surface can be largest
near the bubble and decreases at distances further away
[20]. Consequently, in order that axial conduction can
accommodate the imposed surface heat flux, the surface
temperature must be higher in the region of the thicker
boundary layer nearer the interface. This is consistent
with the observed overshoot in the liquid temperature
profile at the heated surface.

6. Conclusions

In recent years, theoretical developments in nucleate
pool boiling have been focussed on isolated bubble
growth upon a heated surface. It is hoped that an un-
derstanding of the mechanisms which determine the
growth of bubbles will offer insight into and perhaps
predictions of the increased heat transfer coefficient
observed in nucleate pool boiling. However, advances in
the state of the art are inhibited by the apparent sto-
chastic nature of boiling due to the rapidly varying
thermal and flow fields. As a result of the overwhelming
complexities, sufficient testing of the physical modelling
and computational procedures has not been afforded in
the past.

The present theory overcomes this shortcoming in
two ways. First, the theory is simple enough to facilitate
comparison with data for homogeneous growth in an
unbounded fluid. Second, the theory can accommodate
the added complexities of a heated surface and time
varying spatially distributed liquid temperature fields for
hemispherical bubble growth in microgravity. Overall
agreement between the present theory and experimental
data is very good, which instills confidence in the
physical modelling of the problem as well as the com-
putational procedure which has been utilised.

The complicated thermal and hydrodynamic inter-
actions between vapour, liquid and solid have been
manifested for a single, isolated bubble growing on a
heated plane surface from inception with the negligible
contribution of an evaporating microlayer. It has been
shown that early bubble growth away from the initial

radius is restricted by surface tension forces within the
bubble wall. However, minuscule increases in radius
result in an increase in the local interfacial temperature
gradients, which facilitates growth by increasing the
area-averaged heat flux into the bubble. Eventually,
bubble growth becomes impeded by the fact that it now
must force the surrounding liquid out radially. The heat
flux increases to such an extent that this becomes the
limiting factor to growth. Nevertheless, the growth rate
must eventually decrease with increasing time as the
thermal energy stored within the boundary layer which
surrounds the bubble is consumed by the bubble as well
as transported away from the bubble by advection into
the bulk of the liquid. Eventually the growth rate slows
enough so that liquid inertia no longer plays an im-
portant role, and the growth rate becomes limited by the
rate at which energy can be transported to the interface
through the liquid.

Appendix A. Computational technique for the energy
equation

Utilising subscript notation to denote partial differ-
entiation with respect to the subscript variable, the en-
ergy equation in axisymmetric cylindrical coordinates
can be expressed as

T, 4+ UT, 4+ VI, = (T, + 7' T, + T), (13)

where U and V are the axial and radial components of
the liquid velocity defined in Eq. (7).

The energy equation was solved numerically on a
grid which was constructed using an algebraic grid
generation technique proposed by Chen et al. [21]. The
grid variables in the physical domain are depicted in
Fig. 10. Grid clustering near the vapour—liquid interface
as well the moving boundary were facilitated by defining
the grid such that
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Fig. 10. Grid parameters.
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rij :DJ Sin("/[j), Zij :DjCOS("/ij)7 (14)

where

nfi-1

’/v*z(m)

D,-:lJr(Rocfl)(lfSRtan"1 Klfi) tan (Lﬂ)
X ‘ M—1 SR ’

(15)

and the term Sy determines the percentage of grid points
near the interface. In order that conventional finite dif-
ference techniques be utilised, the energy equation was
transformed to a stationary grid with uniform grid
spacing. The transformation is given by

r=r(emn,1), z=1z(&n,1), t=1 (16)
such that
T,=J"(zT ~zT),
T.=J"'(nT, —nT), (17)
.i=T—-Tr,—TIz.
By defining the contravariant velocities as
U= U—=r)zy— (V—zo)ry,
Ve=V—z)r, — (U —=r)z,
the transformed energy equation becomes
T, +J'U°T, +J'V°T, = J %0y(aT,, — 2bT,,
+ ¢TIy +dT, + eT,)
+ () (2, T - 2,T),  (19)
where J is the Jacobian and the coefficients a through e

are related to the metrics and their derivatives through
the following:

J =zyr, — zg1y,

2
n

a= zi +r
b = rry + 2.2y,
c= zg + rf,

-1
d=J"(ryBy — z,5,),
e= J_l(zsﬁZ - rsﬁ1)7
B = az, — 2bzy, + czyy,
py = ary — 2bry, + cry,.
Eq. (19) was discretised using second-order central dif-
ference representations of the spatial derivatives and a
fully implicit first order representation of the time de-
rivatives. At a given time step, the temperature field was

determined using successive over-relaxation (SOR) by
lines. For each line the resulting system of algebraic

expressions were solved utilising the efficient tri-diagonal
matrix algorithm (TDMA).
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